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Abstract

Multi-behavior recommender systems, rapidly advancing across
various domains, utilize plentiful auxiliary interactions on a variety
of user behaviors to enhance recommendations for the target behav-
ior, such as purchases. While previous methods have made strides
in leveraging such interactions with advanced machine learning
methods, they still face challenges in adequately usingmulti-faceted
relationships among behaviors and handling uncertain auxiliary
interactions that could potentially lead to purchases or not. In
this paper, we propose MuLe (Multi-Grained Graph Learning), a
novel graph-based model designed to address these limitations.
We design a multi-grained graph learning strategy to capture di-
verse aspects of behaviors, ranging from unified to specific, and
then to target-related behavior interactions. To handle uncertain
interactions, we use graph attention, weighting the importance of
those interactions related to the target behavior. Afterward, we use
an attention mechanism to effectively aggregate diverse behavior
embeddings obtained from the multi-grained graph encoders. Ex-
tensive experiments show that MuLe significantly outperforms the
state-of-the-art methods, achieving improvements of up to 44.6%
in HR@10 and 52.9% in NDCG@10, respectively. Our code and
datasets are available at https://github.com/geonwooko/MULE.

CCS Concepts

• Information systems→ Recommender systems.
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1 Introduction

Recommender systems, indispensable for navigating the informa-
tion overload, have significantly advanced over the past decades to
enhance personalized user experiences across various domains such
as streaming services, e-commerce, social media, content aggrega-
tion, etc. Collaborative filtering (CF) [29] suggests items to a user
based on interactions of similar users, andmost traditional CF-based
methods exploit matrix factorization (MF) [10, 19, 28, 32] or graph-
based models [8, 18, 21, 27]. However, those methods rely on a
single behavior on items, leading to data sparsity and limited perfor-
mance [11, 41]. In practice, user interactions involve multiple behav-
iors, including viewing, adding to cart, and purchasing [24]. To fully
exploit such behaviors, multi-behavior recommendation has gained
attention from data mining communities [6, 11, 25, 26, 40, 43, 45].
It aims to predict a target behavior, such as purchasing, by using
other behaviors as auxiliary information (Figure 1a).

Many researchers have proposed innovative methods to effec-
tively make recommendations using multi-behavior interactions by
leveraging advanced machine learning methods, including neu-
ral MF [9], graph convolution network (GCN) [16], and trans-
former [34]. As the multi-behavior interactions can be modeled as
a unified multigraph, GCN-based methods [11, 30, 39] learn node
embeddings from the unified graph, and some [2, 42, 45] further
adopt multi-task learning (MTL) to predict auxiliary behaviors as
well. Inspired by the cascading sequence such as viewing, adding
to cart, and purchasing items, some studies use the sequence to
model embeddings within the framework of either MF [6, 7, 36] or
GCN [3, 43]. Recently, several researches [25, 26, 44] have pointed
out that multi-behavior interactions are heavily skewed, leading
them to separately learn embeddings on each behavior-specific
graph to reduce bias from predominant interactions. Especially,
Meng et al. [26] further refine the behavior embeddings into unique
and shared components via a projection technique [1] to fully ex-
ploit supervisory signals from non-overlapping interactions, such
as viewing exclusively without purchasing.

However, the performance of existingmethods formulti-behavior
recommendation still remains limited due to the following:
• Inadequate use of multi-faceted relationships.When deal-
ing with multi-behavior interactions, diverse aspects can be
considered for learning embeddings of users and items. For
instance, a unified graph can reveal global user-item relation-
ships, while specific behavior graphs capture distinct behavioral
signals [44]. Particularly, as pointed in [26], the relationships
between different behaviors require detailed consideration, e.g.,
“only view” and “view and buy” interactions carry distinct im-
plications. However, the previous methods are limited in their
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Figure 1: Examples of (a) user-item interactionswithmultiple

behaviors and (b) certain and uncertain interest related to

the target behavior 𝑡 (e.g., buy).

ability to comprehensively integrate such multi-faceted relation-
ships when encoding embeddings.
• Uncertain interactions of auxiliary behaviors. Note auxil-
iary interactions can be uncertain w.r.t. the target behavior (i.e.,
buy). As shown in Figure 1b, if a user views an item and then
makes a purchase, these clearly indicate their buying intent.
However, if a user only views an item, this interaction may lead
to a purchase or may not. When predicting the user’s target
behavior, such an interaction can be helpful if it conveys poten-
tial interest; otherwise, it is not informative for learning and
acts as noise. Furthermore, as interactions are skewed toward
auxiliary behaviors [25], substantial noises from early stages
can accumulate through a cascading chain, adversely affecting
the learning process.
In this paper, we propose MuLe (Multi-grained Graph-based

Learning), a novel method designed to effectively address the afore-
mentioned limitations in multi-behavior recommendation. For the
first issue, we introduce a multi-grained graph learning strategy
that transitions from a unified graph to behavior-specific graphs
(BSGs), and then to target-related behavior graphs (TRBGs) in order
to effectively capture multi-faceted relationships among behaviors.
Especially, we distinguish between overlapping (e.g., view and buy)
and non-overlapping (e.g., only view) interactions between auxil-
iary and target behaviors to form TRBGs, enablingMuLe to capture
both definite and potential interests from each corresponding TRBG.
For the second issue, we propose Target-Guided Denoising Atten-
tion (TDA) to denoise uncertain auxiliary interactions by distinctly
considering between potential interests and irrelevant ones when
learning embeddings. To achieve this, it uses target behavior in-
formation of users or items to assign high attention weights to
potential interests and low weights to irrelevant ones. Following
theses, we design Multi-Grained Aggregator (MGA) to effectively
integrate multi-grained behavior embeddings using attention mech-
anisms, leading to the final embeddings w.r.t. the target behavior.

Our main contributions are summarized as follows:
• We propose MuLe, a novel graph learning method for multi-
behavior recommendation. Ourmethod employs a multi-grained
graph learning strategy to capture multi-faceted relationships
of behaviors, ranging from unified to specific and then to target-
related behaviors.
• We design TDA to effectively identify potential interest or de-
noise uncertain auxiliary interactions w.r.t. the target behavior.

Moreover, we develop MGA to integrate multi-grained behavior
embeddings using attention mechanisms.
• Experiments on three real-world datasets show that MuLe out-
performs state-of-the-art methods, with improvements of up
to 44.6% in HR@10 and 52.9% in NDCG@10. Additional experi-
ments further highlight the effectiveness of MuLe, indicating the
importance of considering multi-grained graphs and effectively
handling uncertain auxiliary interactions.

2 Related Work

In this section, we review previous methods for recommendations
based on user behavior.
Single-behavior recommendation. It recommends items based
on a single type of user behavior, e.g., ratings [19], clicks [28],
trusts [13, 17], likes [12, 31], etc. Collaborative filtering (CF) [29],
a popular approach, predicts a user’s preferences based on those
of similar users. For this, early models exploit matrix factorization
(MF) [10, 19, 32], graph-based similarity [18] or ranking based on
random walks [5, 14, 27]. To model positive interactions to score
higher than non-observed ones, Bayesian personalized ranking
(BPR) loss is proposed, combined with MF [28] or deep neural net-
works [9]. Recently, graph convolution networks (GCN) [16] have
gained attention in CF. As a leading GCN method, LightGCN [8]
simplifies the GCN design, removing non-linear activations and
feature transformations. Observing that it is hard to train noisy
interactions in the implicit feedback, Wang et al. [37] suggested
adaptively truncating (or denoising) harder samples to facilitate
effective learning. However, the recommendation power of a single-
type behavior is limited by the data sparsity issue, which leads to
insufficient learning ability [11, 41].
Multi-behavior recommendation.To address the issue, themulti-
behavior recommendation aims to use auxiliary behaviors (e.g.,
viewing) to predict a target behavior (e.g., purchasing). In the early
stage, researchers focused on exploiting MF [20, 33] or developing
effective schemes for negative sampling [4, 24]. More recently, var-
ious methods have been proposed that leverage advanced learning
methods, including neural network, GCN, and transformer [40, 41].
Most methods can be categorized based on how they handle the
behaviors: 1) unified, 2) cascading, and 3) parallel approaches.

The unified approach learns behavior embeddings on a single
relational multigraph, representing multi-behavior interactions on
a unified graph. RGCN [11, 30], MBGCN [11], and GNMR [39] per-
form their ownGCN layers on the unified graph. To further enhance
performance, MGNN [45], GHCF [2], and MBGMN [42] integrate a
multi-task learning (MTL) framework, predicting auxiliary interac-
tions as well, into their graph learning processes. CML [38] adopts
contrastive learning coupled with behavior-aware GCNs to capture
knowledge across different behaviors.

The cascading approach designs models exploiting the natural se-
quence of user behaviors, e.g., view→ cart→ buy. ChainRec [36]
extends MF and optimizes scoring functions by considering the
cascading dependency. NMTR [6, 7] extends the MTL technique
with neural MF to predict interactions of each behavior in the cas-
cading order. CRGCN [43] introduces a cascading GCN model with
residual connections, sequentially propagating behavioral embed-
dings in the MTL framework. MB-CGCN [3] encodes nodes for
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Table 1: Frequently-used symbols.

Symbol Description

U set of users, where𝑀 = |U|
I set of items, where 𝑁 = |I |
𝑡 target behavior (e.g., buy)
B set of behaviors
Baux set of auxiliary behaviors, where Baux = B \ {𝑡}
Binter set of target-intersected behaviors
Bcomp set of target-complemented behaviors
E𝑏 set of user-item interactions on behavior 𝑏

G𝑏 = (V, E𝑏 ) user-item graph on behavior 𝑏, whereV = U ∪ I
𝑛 number of nodes in G𝑏 , i.e., 𝑛 = |V| = 𝑀 + 𝑁

A𝑏 ∈ R𝑛×𝑛 adjacency matrix of G𝑏 in Equation (1)
𝑑 embedding dimension

E𝑏 ∈ R𝑛×𝑑 embeddings of users and items w.r.t behavior 𝑏
Z𝑡 ∈ R𝑛×𝑑 final embeddings of users and items w.r.t. 𝑡

𝐿light & 𝐿tda numbers of LightGCN and TDA layers, resp.

each behavior using LightGCNs, and transfers behavior features
along a cascading chain through feature transformations.

The parallel approach separately learns embeddings on each be-
havior graph to consider the imbalance in behavior interactions (see
Table 2), aiming to reduce bias from dominant ones. MB-HGCN [44]
initializes GCNs on individual graphs using global embeddings from
a unified graph, allowing the MTL module to effectively use the
refined behavior embeddings. HPMR [26] utilizes behavior embed-
dings obtained in parallel, and disentangles them into unique and
shared components through projection [1], thereby mitigating the
MTL’s negative transfer [23]. Meng et al. [25] claimed the behavior
imbalance exacerbates the negative transfer through the cascading
scheme, and proposed PKEF, which carefully merges the parallel
approach with cascading using the projection-based distillation.

However, as discussed in Section 1, the existing methods are
limited to comprehensively capture multi-faceted relationships for
learning embeddings, disregarding distinct implications of different
behaviors. Furthermore, target-related auxiliary interactions, such
as only viewing items without purchasing, can introduce noise into
learning target behavior predictions due to their uncertainty. On
the other hand, our MuLe effectively addresses these limitations
through multi-grained graph learning and target-guided denois-
ing attention, showing significant improvements compared to the
existing methods (refer to Table 3).

3 Preliminaries

We introduce preliminaries on basic concepts, and LightGCN, and
the definition of the problem addressed in this paper.

3.1 Concepts and Notations

We describe the basic notations frequently used in this paper, with
the related symbols summarized in Table 1.
User-item interactions. LetU and I denote the sets of users and
items, where 𝑀 = |U| and 𝑁 = |I | are the numbers of users and
items, respectively. Suppose B = {view, cart, · · · , buy} is the set
of behaviors, and let 𝑡 denote the target behavior (e.g., buy). Then,
Baux defines the set of auxiliary behaviors, i.e., Baux = B \ {𝑡}. If
user 𝑢 has interacted with item 𝑖 on behavior 𝑏 ∈ B, a pair (𝑢, 𝑖) is
included in E𝑏 , the set of user-item interactions on 𝑏.

User-item graphs. A user-item graph on behavior 𝑏 is denoted by
G𝑏 = (V, E𝑏 ) whereV = U∪I, and R𝑏 ∈ R𝑀×𝑁 is the user-item
interaction matrix where R𝑏 (𝑢, 𝑖) is 1 if (𝑢, 𝑖) ∈ E𝑏 ; otherwise, 0.
LetA𝑏 and Ã𝑏 denote the adjacency matrix of G𝑏 and its symmetric
normalized matrix, respectively, which are defined as follows:

A𝑏 =

[
0 R𝑏
R⊤
𝑏

0

]
, and Ã𝑏 = D−1/2A𝑏D

−1/2, (1)

where A𝑏 ∈ R𝑛×𝑛 , 𝑛 = 𝑀 + 𝑁 , and D is a diagonal degree matrix,
in which D(𝑖, 𝑖) is the degree of the 𝑖-th node in the graph.

3.2 LightGCN

As described in Section 2, LightGCN [8] employs simplified GCNs
on a graph of single-behavior interactions. As its effectiveness was
empirically verified for graph-based collaborative filtering, it has
been utilized in various methods [3, 25, 43, 44] including multi-
behavior recommendation. In this work, we adopt a variant of
LightGCN with normalization [44] as a graph encoder to learn user
and item embeddings. Given a bipartite graph represented by A
and an initial embedding matrix E(0) , LightGCN with 𝐿 layers is
defined as follows:

E← LightGCN
(
A, E(0)

)
:= E(0) +

𝐿∑︁
𝑙=1

E(𝑙 )

𝑙
(2)

where E(𝑙 ) ∈ R𝑛×𝑑 is the embedding matrix, and 𝑑 is the dimen-
sion. Note E(𝑙 ) ← normalize(ÃE(𝑙−1) ), the result of the message-
passing on the graph at the 𝑙-th layer, where← is the assignment
operator, Ã is the symmetric normalized matrix similarly defined in
Equation (1), and normalize(M) does row-wise 𝐿2-normalization
ofM, i.e., each 𝑖-th row ofM is normalized asM(𝑖)/∥M(𝑖)∥2. In the
model, the only trainable parameters are in E(0) .

3.3 Problem Definition

We define the problem of multi-behavior recommendation as:

Problem 1 (Multi-behavior Recommendation). Thank you
• Input: the setsU and I of users and items, and the set of multi-

behavior interactions, i.e., E = {E𝑏 | 𝑏 ∈ B},
• Output: a ranking score 𝑦𝑡 (𝑢, 𝑖) between user 𝑢 and item 𝑖 , mean-

ing the likelihood of user 𝑢 performing the target behavior 𝑡 (e.g.,

buy) for item 𝑖 .

For each querying user, the recommendation list is generated by
sorting items in descending order based on their similarity scores.

4 Proposed Method

In this section, we proposeMuLe, a novel and effective graph learn-
ing method for multi-behavior recommendation, where the overall
architecture of MuLe is depicted in Figure 2.

4.1 Overview

The technical challenges for effective multi-behavior recommenda-
tion are summarized as follows:
C1. Multi-faceted relationships.As discussed in Section 1, multi-

behavior interactions involves various aspects, resulting in
diverse graphs. How can we effectively learn user and item
embeddings across these different levels of graphs?
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Figure 2: Overall architecture of MuLe where 𝑡 denotes the target behavior (e.g., buy). Our method 1) comprehensively considers

multi-faceted relationships among behaviors, 2) effectively denoises uncertain interactions using TDAs, and 3) integrates

multi-grained behavior embeddings using an MGA, resulting in the final embeddings Z𝑡 .

C2. Uncertain auxiliary interactions.Asmentioned in Section 1,
auxiliary interactions can be uncertain, as they may or may not
intend genuine interest. How can we handle these interactions
to facilitate effective learning?

C3. Diverse behavior embeddings. Given that different graphs
from diverse aspects would yield distinct behavior embeddings,
how can we effectively integrate those embeddings for better
recommendation?

We propose the following ideas to handle the challenges above:
A1. Multi-grained graph encoders. We employ a multi-grained

graph learning strategy that learns various behavior embed-
dings from a unified graph to behavior-specific graphs, and
finally to target-related behavior graphs.

A2. Target-guided denoising attention encoder. To handle
uncertain interactions, we devise a graph attention module,
guided by target behavior embeddings, that assigns high scores
to potential interests and low scores to irrelevant ones.

A3. Multi-grained aggregator. We design an attention-based ag-
gregator that integrates diverse behavior embeddings relative
to the target behavior, resulting in the final embeddings.

4.2 Multi-Grained Graph Encoders

To fully use multi-faceted relationships of behaviors, we construct
multi-grained graphs from multi-behavior interactions, ranging
from coarse to fine-grained. Afterwards, we learn user and item em-
beddings using graph encoders from a unified behavior to specific
behaviors, then to target-related behaviors, as shown in Figure 2.

4.2.1 Unified and Behavior-Specific Graphs. As suggested by [44],
embeddings generated from a unified graph representing merged
interactions can serve as good initial embeddings when learning
behavior-specific embeddings. Building upon this approach, we

also employ a similar strategy to obtain effective warm-start em-
beddings, which are suitable for initializing subsequent encoders
on target-related behavior graphs.
Unified behavior graph encoder.We first construct a unified be-
havior graph by merging interactions. Let Guni denote the unified
behavior graph. Then, Guni = (V, Euni) where Euni ≔

⋃
𝑏∈B E𝑏 ,

the merged interactions of all behaviors. Given an initial learnable
embedding matrix E(0) ∈ R𝑛×𝑑 , MuLe employs LightGCN to learn
Guni as follows:

Euni ← LightGCN
(
Auni, E(0)

)
, (3)

where Auni is the adjacency matrix of Guni, and Euni contains
unified embeddings of users and items.
Behavior-specific graph encoder. This encoder captures distinct
graph signals corresponding to each behavior. As discussed in [25],
this could help mitigate bias from skewed interactions, particularly
since multi-behavior interactions tend to be imbalanced towards
auxiliary behaviors (refer to Table 2). Let G𝑏 be the graph of specific
behavior 𝑏 ∈ B, which is defined as G𝑏 = (V, E𝑏 ). The adjacency
matrix of G𝑏 is denoted by A𝑏 . Initialized by Euni, the learning
process for G𝑏 is as follows:

E𝑏 ← LightGCN
(
A𝑏 , Euni

)
, (4)

where E𝑏 has behavior-specific embeddings of users and items on
behavior 𝑏. As shown in Figure 2,MuLe repeatedly calculates the
embeddings for each behavior, e.g., Eview, Ecart, Ebuy (or E𝑡 ), etc.

4.2.2 Target-related Behavior Graphs. In this step,MuLe aims to
comprehensively learn auxiliary behavior interactions related to
the target behavior (e.g., buy). As discussed in Section 1, the relation-
ships between auxiliary and target behaviors should be considered
differently when learning a user’s target behavior. For example, if
the user both views and buys an item, the view interaction strongly
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conveys the user’s interest in the purchase. However, if the user only
views the item, it may or may not lead to a purchase. The former is
referred to as target-intersected behavior (e.g., view ∩ buy), while
the latter is called target-complemented behavior (e.g., view ∖ buy).
These are formally defined as follows:

Definition 1 (Target-related Behaviors). Suppose Baux is
the set of auxiliary behaviors, and 𝑡 is the target behavior. Then,

Binter = {𝑏 ∩ 𝑡 | 𝑏 ∈ Baux} is the set of target-intersected behaviors,
and Bcomp = {𝑏 ∖ 𝑡 | 𝑏 ∈ Baux} is the set of target-complemented

behaviors.
1

For each 𝑏 ∩ 𝑡 ∈ Binter, the set of its interactions is represented
as E𝑏∩𝑡 ≔

{
(𝑢, 𝑖) | (𝑢, 𝑖) ∈ E𝑏 ∧ (𝑢, 𝑖) ∈ E𝑡

}
. On the other hand,

for each 𝑏 ∖ 𝑡 ∈ Bcomp, the set of its interactions is defined as
E𝑏∖𝑡 ≔

{
(𝑢, 𝑖) | (𝑢, 𝑖) ∈ E𝑏 ∧ (𝑢, 𝑖) ∉ E𝑡

}
. As interactions in E𝑏∩𝑡

and E𝑏∖𝑡 have different implications, we handle them differently
in the learning process.
Target-intersected behavior graph encoder. An interaction of
𝑏 ∩ 𝑡 indicates that the auxiliary behavior 𝑏 has a positive influence
on the target behavior 𝑡 . Thus, we utilize the interactions in E𝑏∩𝑡
to refine behavior embeddings E𝑏 previously obtained from G𝑏 on
specific behavior 𝑏, which contains noisy interactions. Let G𝑏∩𝑡 =
(V, E𝑏∩𝑡 ) denote a graph of target-intersected interactions. For
each 𝑏 ∩ 𝑡 ∈ Bcomp,MuLe learns the graph with E𝑏 as follows:

E𝑏∩𝑡 ← LightGCN
(
A𝑏∩𝑡 , E𝑏

)
, (5)

where A𝑏∩𝑡 is the adjacency matrix of G𝑏∩𝑡 .

4.3 Target-Guided Denoising Attention Encoder

Asmentioned in Section 4.2.2, an interaction of target-complemented
behavior 𝑏 ∖ 𝑡 can be uncertain because the auxiliary behavior 𝑏
may or may not result in the target behavior 𝑡 . Therefore, it is
important to distinguish such an interaction as either informative
or non-informative, when modeling user and item embeddings.

For this purpose, we propose target-guided denoising attention
(TDA) based on graph attention network [35] on G𝑏∖𝑡 = (V, E𝑏∖𝑡 ).
Specifically, in the graph G𝑏∖𝑡 , we aim to assign high weights to
interactions that may contain potential interest, and low weights to
those that are irrelevant or noisy. This enables aggregated embed-
dings with those weights to be further refined w.r.t. the target 𝑡 . As
a guide for this, we exploit target behavior embeddings E𝑡 from G𝑡 ,
which encapsulate genuine interest related to 𝑡 of users and items.

Given the graph G𝑏∖𝑡 with embeddings E𝑡 , TDA with 𝐿 layers
learns embeddings E𝑏∖𝑡 as follows:

E𝑏∖𝑡 ← TDA
(
G𝑏∖𝑡 , E𝑡 , E

(0)
𝑏∖𝑡

)
≔ E(0)

𝑏∖𝑡
+

𝐿∑︁
𝑙=1

E(𝑙 )
𝑏∖𝑡

𝑙
, (6)

where E(0)
𝑏∖𝑡

is an initial embedding matrix. The embedding matrix
E(𝑙 )
𝑏∖𝑡

at the 𝑙-th layer is updated as follows:

E(𝑙 )
𝑏∖𝑡
← normalize

(
A (𝑙 )

𝑏∖𝑡
E(𝑙−1)
𝑏∖𝑡

)
, (7)

which indicates the neighborhood aggregation on the adjacent
attention matrix A (𝑙 )

𝑏∖𝑡
∈ R𝑛×𝑛 at the 𝑙-th layer, which is defined

as the following. For each interaction (𝑢, 𝑖) ∈ E𝑏∖𝑡 , the attention
1Although 𝑏 and 𝑡 do not represent sets, we use set operations to convey the concepts
of intersection and difference between the interactions.

probability (or weight) from 𝑢 to 𝑖 is obtained as follows:

A (𝑙 )
𝑏∖𝑡
(𝑢, 𝑖) ← softmax𝑖

(
{𝑎 (𝑙 )

𝑏∖𝑡
(𝑢, 𝑗) | 𝑗 ∈ N𝑏∖𝑡 (𝑢)}

)
≔

exp
(
𝑎
(𝑙 )
𝑏∖𝑡
(𝑢, 𝑖)

)∑
𝑗∈N𝑏∖𝑡 (𝑢 ) exp

(
𝑎
(𝑙 )
𝑏∖𝑡
(𝑢, 𝑗)

) , (8)

where 𝑎 (𝑙 )
𝑏∖𝑡
(𝑢, 𝑖) is the attention score from 𝑢 to 𝑖 , N𝑏∖𝑡 (𝑢) is the

set of neighboring nodes of𝑢 in G𝑏∖𝑡 , and exp(·) is the exponential
function. For denoising, the score should reflect the relevance be-
tween a user (or item) in the target context (e.g., buy) and an item
(or user) in the auxiliary context complementary to the target (e.g.,
view∖buy). Thus, the score is calculated as follows:

𝑎
(𝑙 )
𝑏∖𝑡
(𝑢, 𝑖) ←

〈
E𝑡 (𝑢), E(𝑙 )𝑏∖𝑡

(𝑖)
〉
, (9)

where E𝑡 (𝑢) is the target embedding of user 𝑢, E(𝑙 )
𝑏∖𝑡
(𝑖) is the target-

complemented embedding of item 𝑖 , and
〈
·, ·
〉
is the inner product

of two vectors.
The attention probability A (𝑙 )

𝑏∖𝑡
(𝑖, 𝑢) from 𝑖 to 𝑢 is calculated in

a manner similar to that described above, using E𝑡 (𝑖) and E(𝑙 )
𝑏∖𝑡
(𝑢).

For (𝑢, 𝑖) ∉ E𝑏∖𝑡 , A
(𝑙 )
𝑏∖𝑡
(𝑢, 𝑖) = A (𝑙 )

𝑏∖𝑡
(𝑖, 𝑢) = 0, indicating that

the attention matrix is sparse, and its graph structure mirrors that
of G𝑏∖𝑡 . We initialize E(0)

𝑏∖𝑡
with E𝑏 , as it provides good warm-

start embeddings derived from plentiful interactions at coarser
levels. Note that our TDA design is well-suited for its purpose,
showing its effectiveness through comparisons with alternative
GNNs (Figure 4), and attention analyses (Section 5.5.1).

4.4 Multi-Grained Aggregator for Target

Behavior Embeddings

After obtaining various embeddings through the multi-grained
graph encoders, we aim to effectively aggregate them into the final
embeddings Z𝑡 related to the target behavior 𝑡 .

For this purpose, we propose multi-grained aggregator (MGA)
that effectively aggregates those embeddings based on attention
mechanisms. MGA first generates intermediate target embeddings
Z̃𝑡 that capture the context of behavior-specific embeddings E𝑏 ,
serving as awarm start for the next step, similar to themulti-grained
graph learning. For this, it computes the attention probability be-
tween the key E𝑡 (𝑣) and the query E𝑏 (𝑣) for each 𝑣 ∈ V , weighting
their relationship. For each 𝑏 ∈ B, let s𝑏 be an attention score be-
tween them, which is calculated as follows:

s𝑏 ← Linear1
(
E𝑡 (𝑣) ∥ E𝑏 (𝑣)

)
. (10)

Note that we have |B| scores of s𝑏 for all 𝑏 in B. Then, its attention
probability (or weight) 𝜶𝑏 is obtained by the softmax function as:

𝜶𝑏 ← softmax𝑏
(
{s𝑏 | 𝑏 ∈ B}

)
≔

exp (s𝑏 )∑
𝑏∈B exp (s𝑏 )

. (11)

Then, Z̃𝑡 (𝑣) ←
∑
𝑏∈B 𝜶𝑏E𝑏 (𝑣). Afterwards, we focus on the re-

lationship between target-related behavior embeddings and the
above Z̃𝑡 . Suppose B′ ≔ Binter ∪Bcomp is the set of target-related
behaviors. For 𝑏′ ∈ B′, the attention score s𝑏′ between the key
Z̃𝑡 (𝑣) and the query E𝑏′ (𝑣) is obtained as follows:

s𝑏′ ← Linear2
(
Z̃𝑡 (𝑣) ∥ E𝑏′ (𝑣)

)
. (12)
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Then, its attention probability 𝜶𝑏′ is computed by the softmax
function among |B′ | scores of s𝑏′ , similarly to Equation (11). For
all 𝑣 ∈ V , the final embedding Z𝑡 (𝑣) is aggregated as follows:

Z𝑡 (𝑣) ←
∑︁

𝑏′∈B′
𝜶𝑏′E𝑏′ (𝑣) . (13)

Note that MGA outputs Z𝑡 (𝑢) and Z𝑡 (𝑖) for all users and items, as
V = U ∪ I. Each linear layer has a weight matrix W ∈ R2𝑑×1
and a bias term b ∈ R1. As shown in Figure 5, this approach is
empirically more effective compared to simple methods such as
averaging all embeddings, or using an MLP.

4.5 Optimization for MuLe

Using the final embeddings Z𝑡 ,MuLe computes the score 𝑦𝑡 (𝑢, 𝑖)
between user 𝑢 and item 𝑖 w.r.t. the target behavior 𝑡 as follows:

𝑦𝑡 (𝑢, 𝑖) ←
〈
Z𝑡 (𝑢),Z𝑡 (𝑖)

〉
, (14)

where the score is used for Problem 1. In recommendation tasks
using implicit feedback, ranking items is more effective than pre-
diction [28], leading to the standard use of a pairwise learning
strategy for model optimization [8, 11, 22]. Following previous
studies [3, 25, 43, 44], we apply the Bayesian personalized rank-
ing (BPR) loss [28], which assumes observed items should receive
higher scores than unobserved ones. Given the set E𝑡 of target
behavior interactions, the loss function L𝑡 is as follows:

L𝑡 (E𝑡 ) ≔
∑︁

(𝑢,𝑖, 𝑗 ) ∈O𝑡
− ln𝜎

(
𝑦𝑡 (𝑢, 𝑖) − 𝑦𝑡 (𝑢, 𝑗)

)
+ 𝜆∥Θ∥22, (15)

where 𝜎 (·) is the sigmoid function, 𝜆 is a hyperparameter for reg-
ularization, and Θ is the set of model parameters of MuLe. In the
loss function, O𝑡 is the set of triplets (𝑢, 𝑖, 𝑗) where (𝑢, 𝑖) ∈ E𝑡
represents a positive sample, and (𝑢, 𝑗) ∉ E𝑡 is a negative sample
which is randomly selected per epoch.

4.6 Complexity Analysis

In this section, we analyze the computational complexities of MuLe
in terms of time and space.

Theorem 1 (Time Complexity for Forward Pass). The time

complexity of MuLe is 𝑂
(
𝐵𝐿𝑑 (𝑚 + 𝑛)

)
, where𝑚 is the total number

of interactions, 𝑛 = 𝑀 + 𝑁 is the number of nodes, 𝐿 is the number of

layers, 𝑑 is embedding dimension, and 𝐵 is the number of behaviors.

Proof. Every component utilizing LightGCN incurs a time com-
plexity of𝑂 (𝐿𝑑 (𝑚+𝑛)) because the adjacency matrix of each behav-
ior graph, which has 𝑂 (𝑚) non-zeros, undergoes 𝐿 sparse matrix
multiplications, each taking 𝑂 (𝐿𝑑𝑚). The normalized sum adds
𝑂 (𝐿𝑑𝑛) to it. TDA also requires𝑂 (𝐿𝑑 (𝑚 + 𝑛)) time, but it addition-
ally spends 𝑂 (𝑑𝑚) time to compute each attention matrix. Since
MuLe uses𝑂 (𝐵) graph encoders, it takes𝑂 (𝐵𝐿𝑑 (𝑚+𝑛)) time. MGA
operates in 𝑂 (𝐵𝑑𝑛) time, as it spends 𝑂 (𝐵𝑑) time per node 𝑣 for
B′, the set of target-related behaviors, where |B′ | = 𝑂 (𝐵). Putting
everything together, we prove the theorem. □

Theorem 2 (Space Complexity on Model Parameters). The
space complexity for the learnable parameters of MuLe is 𝑂

(
𝑑𝑛

)
.

Proof. The initial embedding matrix E(0) requires𝑂 (𝑑𝑛) space.
Note that the graph encoders of MuLe do not require additional
model parameters. MGA includes two linear layers where each

Table 2: Data statistics of multi-behavior interactions. The

percentage of each auxiliary behavior is the ratio of target-

intersected interactions (e.g., view & buy).

Dataset Users Items Views Collects Carts Buys

Taobao 15,449 11,953 873,954 (09%) - 195,476 (10%) 92,180
Tmall 41,738 11,953 1,813,498 (12%) 221,514 (12%) 1,996 (15%) 255,586
Jdata 93,334 24,624 1,681,430 (16%) 45,613 (43%) 49,891 (57%) 321,883

linear layer uses 𝑂 (𝑑) space for a weight matrix and a bias. Hence,
MuLe requires a total of 𝑂 (𝑑𝑛) space for its model parameters. □

The above theorems indicate that, assuming the hyperparam-
eters are constant and behaviors are of fixed size,MuLe requires
𝑂 (𝑚 + 𝑛) time and uses 𝑂 (𝑛) model parameters. In other words,
MuLe is linearly scalable w.r.t. the total number of interactions
and the number of nodes (i.e., users and items), respectively. Note
thatMuLe lies within the same complexities as other GNN-based
methods [3, 25, 26, 36, 43, 44], andMuLe utilizes a few additional
model parameters of 𝑂 (𝑑).

5 Experiments

In this section, we conducted experiments to address the following
questions:
Q1. Recommendation performance. How effective isMuLe for

multi-behavior recommendation compared to its competitors?
Q2. Ablation study. How does each module of MuLe affect its

recommendation performance?
Q3. Parameter sensitivity. How does the number of layers in the

graph encoders of MuLe affect the performance?
Q4. Attention analysis. What insights do the TDA and MGA

modules of MuLe provide, respectively?
Q5. Case study. How does the TDA of MuLe differentiate target-

complemented interactions for specific users?

5.1 Experimental Settings

In this section, we explain the setup for our experiments on multi-
behavior recommendation.
Machine and Implementation.Weused aworkstationwithAMD
5955WX and RTX 4090 (24GB VRAM). Our method MuLe was im-
plemented using Pytorch 2.0 in Python 3.9.
Datasets. Following recent studies [25, 43], we performed experi-
ments on three publicly available real-world benchmark datasets:
Taobao [25], Tmall [43], and JData [43]. These are sourced from
e-commerce platforms in China. Tmall and JData have four behav-
ior types: view, add-to-collect, add-to-cart, and buy, while Taobao,
apart from add-to-collect, consists of three types. We followed the
approach of previous studies [7, 11, 25, 43] for the datasets, where
duplicate interactions were preprocessed by retaining only the ear-
liest occurrence for each behavior. The detailed statistics of the
datasets are summarized in Table 2.
Competitors. We comparedMuLe with state-of-the-art models
for multi-behavior recommendation to validate its effectiveness.
For single-behavior models, we examined MF-BPR [28], NeuMF [9],
and LightGCN [8]. For multi-behavior models adopting a unified ap-
proach, we investigated RGCN [30], GNMR [39], and MBGCN [11].
Employing a cascading approach, NMTR [6, 7], CRGCN [43], and
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Table 3: Recommendation performance in terms of HR@10

and NDCG@10. The best result is in bold, and the second best

is underlined. The “% diff” means the percentage improve-

ment of the best performance over the second best.

Model

HR@10 NDCG@10

Taobao Tmall Jdata Taobao Tmall Jdata

MF-BPR 0.0076 0.0230 0.1850 0.0036 0.0207 0.1238
NeuMF 0.0236 0.0124 0.2090 0.0128 0.0062 0.1410

LightGCN 0.0411 0.0393 0.2252 0.0240 0.0209 0.1436
RGCN 0.0215 0.0316 0.2406 0.0104 0.0157 0.1444
GNMR 0.0368 0.0393 0.3068 0.0216 0.0193 0.1581
MBGCN 0.0509 0.0549 0.2803 0.0294 0.0285 0.1572
NMTR 0.0282 0.0536 0.3142 0.0137 0.0286 0.1717
CRGCN 0.0855 0.0840 0.5001 0.0439 0.0442 0.2914

MB-CGCN 0.1233 0.0984 0.4349 0.0677 0.0558 0.2758
HPMR 0.1104 0.0956 − 0.0599 0.0515 −
PKEF 0.1385 0.1277 0.4334 0.0785 0.0721 0.2615

MB-HGCN 0.1299 0.1443 0.5406 0.0690 0.0769 0.3555
MuLe 0.1918 0.2112 0.5889 0.1103 0.1177 0.4061

% diff 38.5% 44.6% 10.3% 40.5% 52.9% 25.4%

−: it indicates out-of-memory errors during training.

MB-CGCN [3] were included. Furthermore, we compared MB-
HGCN [44], HPMR [26], and PKEF [25], as parallel approaches.
For brief descriptions of each competitor, refer to Section 2. For the
competitors, we used their official open-source implementations.
Training and evaluation protocol. Following the broadly used
leave-one-out setting [3, 7, 11, 42–44], the test set consists of the last
interacted item and all uninteracted items for each user. The second
most recently interacted item for each user forms the validation
set for hyperparameter tuning, while the remaining positive items
are used for training. In the evaluation phase, items within the test
set for each user are ranked based on predicted scores by recom-
mendation models, where its top-𝑘 ranking quality is measured by
HR@𝑘 and NDCG@𝑘 [7, 25, 26, 39, 42–44]. HR@𝑘 measures how
often relevant items, on average, appear in the recommendation for
each user. NDCG@𝑘 considers both relevance and order of relevant
items in a ranking, averaged across all users.
Hyperparameter tuning. According to previous studies [3, 25],
we set the final embedding dimension 𝑑 to 64, the batch size to 210
and the number of epochs to 100 for all tested methods. For each
metric, we conducted a grid search to validate hyperparameters
using the validation set and recorded the test performance with
the validated hyperparameters. The hyperparameters of MuLe
are the numbers 𝐿light and 𝐿tda of LightGCN’s layers and TDA’s
layers, where they were tuned in {0, 1, 2, 3} and {0, 1, 2, 3, 4, 5, 6},
respectively. We used the Adam optimizer [15], where its learning
rate 𝜂 was tuned in {10−4, 5 · 10−4, 10−3}. The regularizer 𝜆 in
Equation (15) was searched in {0, 10−5}. For other methods, we
followed the hyperparameter ranges described in the corresponding
papers. We repeated each experiment 5 times with different random
seeds and report the average test performance.

5.2 Recommendation Performance (Q1)

We conducted experiments on the multi-behavior recommendation
in Problem 1 to evaluate the performance of each method across the
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Figure 3: Effect of multi-grained graphs. As shown byMuLe,

it is beneficial to use behavior graphs from all levels.
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Figure 4: Effect of target-guided attention for learning G𝑏∖𝑡 .
Our TDAdesign provesmore effective than alternative GNNs.

benchmark datasets, where𝑘 was set to 10 for HR@𝑘 and NDCG@𝑘 .
From Table 3, we found the following observations:
• Our proposed MuLe significantly outperforms the state-of-the-
art methods across all datasets, showing improvements of up

to 44.6% inHR@10 andup to 52.9% inNDCG@10 compared

to the second-best model, particularly on the Tmall dataset.
• Using multi-behavior interactions is essential because single-
behavior methods, such as LightGCN, which only use the target-
behavior graph, significantly underperform compared to most
multi-behavior models, including MuLe.
• The unified approaches such as GNMR and MBGCN offer infe-
rior recommendations compared to cascading (e.g., MB-CGCN)
and parallel (e.g., PKEF) models, highlighting the importance of
separately leveraging behavior-specific interactions.
• While the cascading approaches, such as MB-CGCN, achieve
moderate performance, they slightly underperform compared to
the parallel approaches such as PKEF and MB-HGCN, including
MuLe, due to the noise accumulation issue.
• As a parallel approach,MuLe outperforms others such as HPMR,
PKEF, andMB-HGCN.HPMRproduced embeddingswith limited
expressiveness because it indirectly captures target-complemented
semantics for each node via projection in MTL. In contrast, our
MuLe directly refines the uncertainty of target-complemented
interactions through TDA. While MB-HGCN and PKEF use ei-
ther unified or behavior-specific interactions, they overlook
target-related graphs G𝑏∩𝑡 and G𝑏∖𝑡 , resulting in lower perfor-
mance compared to MuLe.

5.3 Ablation Study (Q2)

In this section, we investigate the effectiveness of each module or
design within MuLe through ablation studies.

5.3.1 Effect of multi-grained graphs. We considered the following
variants of MuLe to verify the effect of graphs at each level.
• MuLe is a version of using the graphs from all levels.
• MuLe-T is a version that excludes TRBGs from MuLe.
• MuLe-T-B is a version that excludes BSGs from MuLe-T.
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Figure 5: Effect of multi-grained aggregator for Z𝑡 . Our MGA

design is better suited than the simple aggregators.

Figure 3 shows that using graphs from all levels is beneficial

for recommendation performance across all tested datasets. Es-
pecially, MuLe-T significantly underperforms compared to MuLe,
highlighting the importance of separating auxiliary behaviors re-
lated to the target behavior and treating confident and uncertain (or
noisy) interactions differently. On the other hand, MuLe-T-B yields
the worst performance, showing that using unified interactions
without the semantics of specific behaviors is undesirable.

5.3.2 Effect of TDA. To validate our design for TDA, we replaced
TDA with alternative graph neural networks (GNNs) such as Light-
GCN [8] or GAT [35] (w/o using the target E𝑡 ) for learning the
graph G𝑏∖𝑡 of each target-complemented behavior 𝑏 ∖ 𝑡 ∈ Bcomp.
As shown in Figure 4, our target-guided attention in TDA is

more effective than those GNNs. Note that the performance of
LightGCN drops by up to 22% compared to TDA, indicating that
treating interactions in G𝑏∖𝑡 equally is not beneficial. Moreover,
using E𝑡 is crucial for achieving effective attentions, as GAT with-
out E𝑡 results in undesirable attentions, decreasing by up to 44%,
which is much worse than LightGCN.

5.3.3 Effect of MGA. To show MGA’s effectiveness for Z𝑡 , given
the multi-grained behavior embeddings, we replaced MGA with
simple aggregators such as MEAN (averaging the embeddings) or
MLP (training a two-layered MLP on their concatenation). Figure 5
demonstrates that our multi-grained aggregator utilizing an

attention mechanism outperforms the alternatives for obtain-
ing Z𝑡 . The simple aggregators such as MEAN and MLP degrade
the performance. Particularly, MLP performs the worst, as it sub-
stantially increases model complexity by concatenating E𝑏 , leading
to overfitting.

5.4 Parameter Sensitivity (Q3)

Our MuLe has two main hyperparameters: 𝐿light and 𝐿tda, which
represent the numbers of LightGCN and TDA layers, respectively.
We investigated how 𝐿light and 𝐿tda impact the performance of
MuLe in terms of NDCG@10 by varying 𝐿light from 0 to 3 and
𝐿tda from 0 to 6.

Figure 6 indicates that in most cases, TDA has a greater impact

on performance compared to LightGCN, as the performance im-
proves with increasing 𝐿tda while 𝐿light decreases. For examples,
in the Tmall dataset, the best performance is achieved when 𝐿tda
is 5 and 𝐿light is 1. Note that using additional layers for LightGCN
was not beneficial, suggesting that a small number of layer is suffi-
cient for obtaining the warm-start embeddings in Guni and G𝑏 or
encoding confident interactions inG𝑏∩𝑡 . On the other hand, to effec-
tively denoise interactions in G𝑏∖𝑡 , TDA considered higher-order
neighborhoods, requiring more layers.
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Figure 6: Effect of 𝐿tda and 𝐿light of MuLe, where 𝐿tda and

𝐿light are the numbers of TDA and LightGCN layers, respec-

tively. MuLe tends to provide the best performance when

𝐿light is small and 𝐿tda is large.
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Figure 7: Histogram of the relative ratio of TP to FP atten-

tions in TDA for each G𝑏∖𝑡 where 𝑏 ∈ Baux and 𝑡 is the target

behavior. Our TDA differentiates b.t.w. TP and FP, assigning

relatively higher attention weights to TP than to FP.

5.5 Attention Analysis (Q4)

In this section, we discuss the attention results obtained from TDA
and MGA of MuLe, respectively.

5.5.1 Attention analysis for TDA. We analyze how effectively TDA
distinguishes (or denoises) uncertain interactions in G𝑏∖𝑡 . For eval-
uation, we first define true or false positive interactions2 in G𝑏∖𝑡 =
(V, E𝑏∖𝑡 ) for the target behavior 𝑡 as follows:
• True positive (TP) interaction: if (𝑢, 𝑖) is in training E𝑏∖𝑡 , and
it is also found in E(test)𝑡 , then (𝑢, 𝑖) is called TP interaction.
• False positive (FP) interaction: if (𝑢, 𝑖) is in training E𝑏∖𝑡 ,
and it is not found in E(test)𝑡 , then (𝑢, 𝑖) is called FP interaction.

Ideally, TDA should assign low attention weights to FP interactions
and high weights to TP ones.
Attention distribution. We examined the attention weight of
TDA’s last layer for each TP or FP interaction in G𝑏∖𝑡 . For visualiza-
tion, we divided the attention range [0, 1] into four quartiles, and
checked the relative ratio of TP to FP interactions within each bin.
As shown in Figure 7, TDA distinctly differentiates between TP

and FP interactions in most cases. In general, more FP interac-
tions are found in the lower quartiles, while more TP interactions
are found in the higher quartiles. Although the absolute value of at-
tention is affected by the number of neighbors (which is why all TP
and FP interactions are distributed across the range), FP interactions
tend to have relatively lower weights than TP interactions.
Statistical difference. We checked the statistical difference be-
tween the TP and FP attention distributions, where 𝜇tp and 𝜇fp are
the mean values of their respective distributions, and Δ𝜇 is their
percentage difference. As presented in Table 4, in most cases, TDA

2Note that TP and FP interactions were only used for the analysis, not for training.
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Table 4: Statistics of TDA attention distributions for TP and

FP interactions in G𝑏∖𝑡 , where 𝜇tp and 𝜇fp are their mean

values, and Δ𝜇 is their percentage difference. In most cases,

TDA yields different distributions for TP and FP.

Dataset

Taobao Tmall Jdata

𝜇tp 𝜇fp Δ𝜇 𝜇tp 𝜇fp Δ𝜇 𝜇tp 𝜇fp Δ𝜇

Gview∖𝑡 0.033 0.019 72%† 0.041 0.026 58%† 0.183 0.054 239%†

Gcol∖𝑡 - 0.184 0.126 46%† 0.629 0.338 86%†

Gcart∖𝑡 0.129 0.087 49%† 0.654 0.633 3%‡ 0.638 0.425 50%†

†: it is statistically significant as 𝑝-value of Student’s 𝑡 -test is less than 0.05.
‡: it is not statistically significant as 𝑝-value is greater than 0.05.

𝐄!"#$∩& 𝐄'()*∩& 𝐄!"#$\& 𝐄'()*\& 𝐙&
66% 14%12%8%

(a) Taobao

88% 7%3%2%

(b) Tmall

64% 16%11%9%

(c) Jdata

Figure 8: Average attention weights for each behavior, used

for yielding Z𝑡 . MGA can identify which behaviors are im-

portant for Z𝑡 , depending on the datasets.

yields different attention distributions for TP and FP, with
𝜇tp being greater than 𝜇fp, as well as a large Δ𝜇 . For all cases ex-
cept Gcart∖𝑡 of the Tmall dataset, there are statistically significant
differences between them, as the 𝑝-values from Student’s 𝑡-test are
less than 0.05. Note that views tend to be noisier (more FPs) than
collects, which are noisier than carts, because people usually buy
items in their cart rather than those they are just viewing or collect-
ing [43]. According to the table, Δ𝜇 is largest for views, followed
by collects, and smallest for carts. This implies that TDA assigns
attentions such that TPs and FPs become more distinguishable as
interactions get noisier. Thus, TDA effectively reduces the impact
of noisy interactions and focuses on potential interests.

5.5.2 Attention analysis for MGA. We investigated the attention
weights obtained from MGA in Equation (13) to identify which
behaviors are important for producing Z𝑡 . For each target-related
behavior 𝑏′, we computed the average of attention weights 𝜶𝑏′

for all nodes. To simplify visualization, we merged collect into the
concept of cart, as they share a similar context in e-commerce.

Figure 8 presents thatMGA effectively captures the impor-

tance of each target-related behavior, where the detailed at-
tention weights depend on the datasets. One notable point is that
the attention of Eview∖𝑡 takes the largest portion for all datasets.
Another point is that the portion of E𝑏∖𝑡 is larger than that of E𝑏∩𝑡
for each behavior 𝑏. These indicate that MGA effectively harnesses
the potential interest in E𝑏∖𝑡 refined through TDA, and the refined
embeddings are beneficial for the multi-behavior recommendation
task, especially when a large number of noisy interactions are given.

5.6 Case Study (Q5)

We conducted a case study on how TDA distinctly considers TP
and FP interactions, defined in Section 5.5.1. Figure 9 shows the

View\t Collect\t Cart\t

False PositiveTrue Positive

0.49 0.13 0.24 0.12

0.45 0.12

User ID
16753

4972

11960 17104 214884972

6085 7464 22166

0.45 0.12 0.28 0.14

(a) Case 1 in Jdata

0.19 0.14 0.17 0.49

User ID
73624

2429911793115928376

2492211793

0.32 0.67

(b) Case 2 in Jdata

Figure 9: Case studies of TDA’s attentions of specific users.

It tends to assign high weights to TPs and low weights to

FPs, effectively drawing potential interests of users during

learning embeddings.

attention weights of TDA’s last layer for users with IDs 16753 and
73624 in the Jdata dataset. In both cases, TDA consistently

assigned higher weights to TPs than to FPs, implying that TDA
effectively identifies potential interests from those interactions as
intended by its design. Although we demonstrate only successful
cases and acknowledge the presence of ambiguous cases, as verified
in Figure 7 and Table 4, there were more desirable cases overall,
with similar results in other datasets.

6 Conclusion

In this paper, we proposeMuLe, a novel graph learning method for
effective multi-behavior recommendation. Our MuLe learns multi-
grained graphs to fully leverage the multi-faceted relationships of
behaviors. Additionally,MuLe’s TDA effectively denoises target-
complemented interactions using attention mechanisms to distin-
guish potential interest from noisy interactions. Finally, MuLe’s
MGA aggregates diverse behavior embeddingswith attention to pro-
duce the final embeddings related to the target behavior. Through
extensive experiments on three real-world benchmark datasets, we
demonstrate that our MuLe significantly outperforms the state-of-
the-art methods, improving by up to 44.6% in HR@10 and 52.9% in
NDCG@10, respectively. We additionally confirm the effectiveness
of TDA and MGA through further experiments, including ablation
studies and attention analyses, which highlight the significance of
incorporating multi-grained graphs and adeptly managing uncer-
tain auxiliary interactions. Our code and datasets are available at
https://github.com/geonwooko/MULE.
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